(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
cond(true, x) → cond(odd(x), p(x))
odd(0') → false
odd(s(0')) → true
odd(s(s(x))) → odd(x)
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
cond(true, x) → cond(odd(x), p(x))
odd(0') → false
odd(s(0')) → true
odd(s(s(x))) → odd(x)
p(0') → 0'
p(s(x)) → x
Types:
cond :: true:false → 0':s → cond
true :: true:false
odd :: 0':s → true:false
p :: 0':s → 0':s
0' :: 0':s
false :: true:false
s :: 0':s → 0':s
hole_cond1_0 :: cond
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
cond,
oddThey will be analysed ascendingly in the following order:
odd < cond
(6) Obligation:
TRS:
Rules:
cond(
true,
x) →
cond(
odd(
x),
p(
x))
odd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond :: true:false → 0':s → cond
true :: true:false
odd :: 0':s → true:false
p :: 0':s → 0':s
0' :: 0':s
false :: true:false
s :: 0':s → 0':s
hole_cond1_0 :: cond
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
odd, cond
They will be analysed ascendingly in the following order:
odd < cond
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
odd(
gen_0':s4_0(
*(
2,
n6_0))) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
odd(gen_0':s4_0(*(2, 0))) →RΩ(1)
false
Induction Step:
odd(gen_0':s4_0(*(2, +(n6_0, 1)))) →RΩ(1)
odd(gen_0':s4_0(*(2, n6_0))) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
cond(
true,
x) →
cond(
odd(
x),
p(
x))
odd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond :: true:false → 0':s → cond
true :: true:false
odd :: 0':s → true:false
p :: 0':s → 0':s
0' :: 0':s
false :: true:false
s :: 0':s → 0':s
hole_cond1_0 :: cond
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
odd(gen_0':s4_0(*(2, n6_0))) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
cond
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond.
(11) Obligation:
TRS:
Rules:
cond(
true,
x) →
cond(
odd(
x),
p(
x))
odd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond :: true:false → 0':s → cond
true :: true:false
odd :: 0':s → true:false
p :: 0':s → 0':s
0' :: 0':s
false :: true:false
s :: 0':s → 0':s
hole_cond1_0 :: cond
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
odd(gen_0':s4_0(*(2, n6_0))) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
odd(gen_0':s4_0(*(2, n6_0))) → false, rt ∈ Ω(1 + n60)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
cond(
true,
x) →
cond(
odd(
x),
p(
x))
odd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond :: true:false → 0':s → cond
true :: true:false
odd :: 0':s → true:false
p :: 0':s → 0':s
0' :: 0':s
false :: true:false
s :: 0':s → 0':s
hole_cond1_0 :: cond
hole_true:false2_0 :: true:false
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
odd(gen_0':s4_0(*(2, n6_0))) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
odd(gen_0':s4_0(*(2, n6_0))) → false, rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)